Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(4): 1379-1390, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511206

RESUMO

Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos , Tuberculose/microbiologia
2.
Sci Rep ; 13(1): 18613, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903877

RESUMO

The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Cobaias , Animais , Vacina BCG , Tuberculose/prevenção & controle , Vacinação , Fosfatidilinositóis
3.
Nat Commun ; 13(1): 78, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013257

RESUMO

T cells recognize mycobacterial glycolipid (mycolipid) antigens presented by CD1b molecules, but the role of CD4 and CD8 co-receptors in mycolipid recognition is unknown. Here we show CD1b-mycolipid tetramers reveal a hierarchy in which circulating T cells expressing CD4 or CD8 co-receptor stain with a higher tetramer mean fluorescence intensity than CD4-CD8- T cells. CD4+ primary T cells transduced with mycolipid-specific T cell receptors bind CD1b-mycolipid tetramer with a higher fluorescence intensity than CD8+ primary T cells. The presence of either CD4 or CD8 also decreases the threshold for interferon-γ secretion. Co-receptor expression increases surface expression of CD3ε, suggesting a mechanism for increased tetramer binding and activation. Targeted transcriptional profiling of mycolipid-specific T cells from individuals with active tuberculosis reveals canonical markers associated with cytotoxicity among CD8+ compared to CD4+ T cells. Thus, expression of co-receptors modulates T cell receptor avidity for mycobacterial lipids, leading to in vivo functional diversity during tuberculosis disease.


Assuntos
Antígenos CD1/imunologia , Glicolipídeos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Antígenos CD1/genética , Complexo CD3/genética , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Citotoxicidade Imunológica , Expressão Gênica , Glicolipídeos/metabolismo , Humanos , Interferon gama/genética , Interferon gama/imunologia , Ativação Linfocitária , Mycobacterium tuberculosis/crescimento & desenvolvimento , Cultura Primária de Células , Ligação Proteica , Multimerização Proteica , Transdução Genética , Tuberculose/genética , Tuberculose/microbiologia
4.
ACS Infect Dis ; 6(8): 2235-2248, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32657565

RESUMO

Lipoarabinomannan (LAM) and its biosynthetic precursors, phosphatidylinositol mannosides (PIMs) and lipomannan (LM) play important roles in the interactions of Mycobacterium tuberculosis with phagocytic cells and the modulation of the host immune response, but nothing is currently known of the impact of these cell envelope glycoconjugates on the physiology and pathogenicity of nontuberculous mycobacteria. We here report on the structures of Mycobacterium abscessus PIM, LM, and LAM. Intriguingly, these structures differ from those reported previously in other mycobacterial species in several respects, including the presence of a methyl substituent on one of the mannosyl residues of PIMs as well as the PIM anchor of LM and LAM, the size and branching pattern of the mannan backbone of LM and LAM, and the modification of the arabinan domain of LAM with both succinyl and acetyl substituents. Investigations into the biological significance of some of these structural oddities point to the important role of polysaccharide succinylation on the ability of M. abscessus to enter and survive inside human macrophages and epithelial cells and validate for the first time cell envelope polysaccharides as important modulators of the virulence of this emerging pathogen.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Parede Celular , Humanos , Macrófagos , Polissacarídeos
5.
Sci Rep ; 8(1): 16840, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443026

RESUMO

Dectin-2 is a C-type lectin involved in the recognition of several pathogens such as Aspergillus fumigatus, Candida albicans, Schistosoma mansonii, and Mycobacterium tuberculosis that triggers Th17 immune responses. Identifying pathogen ligands and understanding the molecular basis of their recognition is one of the current challenges. Purified M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) was shown to induce signaling via Dectin-2, an activity that requires the (α1 → 2)-linked mannosides forming the caps. Here, using isogenic M. tuberculosis mutant strains, we demonstrate that ManLAM is a bona fide and actually the sole ligand mediating bacilli recognition by Dectin-2, although M. tuberculosis produces a variety of cell envelope mannoconjugates, such as phosphatidyl-myo-inositol hexamannosides, lipomannan or manno(lipo)proteins, that bear (α1 → 2)-linked mannosides. In addition, we found that Dectin-2 can recognize lipoglycans from other bacterial species, such as Saccharotrix aerocolonigenes or the human opportunistic pathogen Tsukamurella paurometabola, suggesting that lipoglycans are prototypical Dectin-2 ligands. Finally, from a structure/function relationship perspective, we show, using lipoglycan variants and synthetic mannodendrimers, that dimannoside caps and multivalent interaction are required for ligand binding to and signaling via Dectin-2. Better understanding of the molecular basis of ligand recognition by Dectin-2 will pave the way for the rational design of potent adjuvants targeting this receptor.


Assuntos
Lectinas Tipo C/metabolismo , Lipopolissacarídeos/metabolismo , Mycobacterium tuberculosis/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Ligantes , Lipopolissacarídeos/química , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
EMBO Rep ; 18(12): 2144-2159, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29097394

RESUMO

Immunity to mycobacteria involves the formation of granulomas, characterized by a unique macrophage (MΦ) species, so-called multinucleated giant cells (MGC). It remains unresolved whether MGC are beneficial to the host, that is, by prevention of bacterial spread, or whether they promote mycobacterial persistence. Here, we show that the prototypical antimycobacterial molecule nitric oxide (NO), which is produced by MGC in excessive amounts, is a double-edged sword. Next to its antibacterial capacity, NO propagates the transformation of MΦ into MGC, which are relatively permissive for mycobacterial persistence. The mechanism underlying MGC formation involves NO-induced DNA damage and impairment of p53 function. Moreover, MGC have an unsurpassed potential to engulf mycobacteria-infected apoptotic cells, which adds a further burden to their antimycobacterial capacity. Accordingly, mycobacteria take paradoxical advantage of antimicrobial cellular efforts by driving effector MΦ into a permissive MGC state.


Assuntos
Células Gigantes/microbiologia , Macrófagos/fisiologia , Mycobacterium/metabolismo , Óxido Nítrico/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Dano ao DNA , Genes p53/fisiologia , Células Gigantes/metabolismo , Humanos , Macrófagos/microbiologia , Camundongos , Mycobacterium/imunologia , Óxido Nítrico/biossíntese
7.
Proc Natl Acad Sci U S A ; 114(42): 11205-11210, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973928

RESUMO

Mycobacterium tuberculosis is a major human pathogen that is able to survive inside host cells and resist immune clearance. Most particularly, it inhibits several arms of the innate immune response, including phagosome maturation or cytokine production. To better understand the molecular mechanisms by which M. tuberculosis circumvents host immune defenses, we used a transposon mutant library generated in a virulent clinical isolate of M. tuberculosis of the W/Beijing family to infect human macrophages, utilizing a cell line derivative of THP-1 cells expressing a reporter system for activation of the transcription factor NF-κB, a key regulator of innate immunity. We identified several M. tuberculosis mutants inducing a NF-κB activation stronger than that of the wild-type strain. One of these mutants was found to be deficient for the synthesis of cell envelope glycolipids, namely sulfoglycolipids, suggesting that the latter can interfere with innate immune responses. Using natural and synthetic molecular variants, we determined that sulfoglycolipids inhibit NF-κB activation and subsequent cytokine production or costimulatory molecule expression by acting as competitive antagonists of Toll-like receptor 2, thereby inhibiting the recognition of M. tuberculosis by this receptor. Our study reveals that producing glycolipid antagonists of pattern recognition receptors is a strategy used by M. tuberculosis to undermine innate immune defense. Sulfoglycolipids are major and specific lipids of M. tuberculosis, considered for decades as virulence factors of the bacilli. Our study uncovers a mechanism by which they may contribute to M. tuberculosis virulence.


Assuntos
Glicolipídeos/metabolismo , Imunidade Inata , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Glicolipídeos/farmacologia , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , NF-kappa B/metabolismo
8.
J Immunol ; 195(10): 4595-603, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466957

RESUMO

Human T cells are activated by both peptide and nonpeptide Ags produced by Mycobacterium tuberculosis. T cells recognize cell wall lipids bound to CD1 molecules, but effector functions of CD1-reactive T cells have not been systematically assessed in M. tuberculosis-infected humans. It is also not known how these features correlate with T cell responses to secreted protein Ags. We developed a flow cytometric assay to profile CD1-restricted T cells ex vivo and assessed T cell responses to five cell wall lipid Ags in a cross-sectional study of 19 M. tuberculosis-infected and 22 M. tuberculosis-uninfected South African adolescents. We analyzed six T cell functions using a recently developed computational approach for flow cytometry data in high dimensions. We compared these data with T cell responses to five protein Ags in the same cohort. We show that CD1b-restricted T cells producing antimycobacterial cytokines IFN-γ and TNF-α are detectable ex vivo in CD4(+), CD8(+), and CD4(-)CD8(-) T cell subsets. Glucose monomycolate was immunodominant among lipid Ags tested, and polyfunctional CD4 T cells specific for this lipid simultaneously expressed CD40L, IFN-γ, IL-2, and TNF-α. Lipid-reactive CD4(+) T cells were detectable at frequencies of 0.001-0.01%, and this did not differ by M. tuberculosis infection status. Finally, CD4 T cell responses to lipids were poorly correlated with CD4 T cell responses to proteins (Spearman rank correlation -0.01; p = 0.95). These results highlight the functional diversity of CD1-restricted T cells circulating in peripheral blood as well as the complementary nature of T cell responses to mycobacterial lipids and proteins. Our approach enables further population-based studies of lipid-specific T cell responses during natural infection and vaccination.


Assuntos
Antígenos CD1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Lipídeos de Membrana/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Adolescente , Antígenos de Bactérias/imunologia , Ligante de CD40/biossíntese , Parede Celular/imunologia , Estudos Transversais , Feminino , Citometria de Fluxo , Glicolipídeos/imunologia , Humanos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Células K562 , Ativação Linfocitária/imunologia , Masculino , África do Sul/epidemiologia , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/biossíntese
9.
J Biol Chem ; 290(44): 26576-86, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26391398

RESUMO

Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress ß-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.


Assuntos
MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Epigênese Genética , Imunidade Inata , Fatores Imunológicos/farmacologia , MAP Quinase Quinase Quinases/genética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno , Óxido Nítrico/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Polissacarídeos Bacterianos/farmacologia , Ligação Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/farmacologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
10.
J Biol Chem ; 285(53): 41348-55, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21030587

RESUMO

The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.


Assuntos
Galactanos/química , Galactosamina/química , Mycobacterium tuberculosis/metabolismo , Alelos , Membrana Celular/metabolismo , Glicosilação , Lipídeos/química , Modelos Biológicos , Mutação , Mycobacterium smegmatis/metabolismo , Fenótipo , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
PLoS Pathog ; 6(9): e1001100, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20844580

RESUMO

The ability of the tubercle bacillus to arrest phagosome maturation is considered one major mechanism that allows its survival within host macrophages. To identify mycobacterial genes involved in this process, we developed a high throughput phenotypic cell-based assay enabling individual sub-cellular analysis of over 11,000 Mycobacterium tuberculosis mutants. This very stringent assay makes use of fluorescent staining for intracellular acidic compartments, and automated confocal microscopy to quantitatively determine the intracellular localization of M. tuberculosis. We characterised the ten mutants that traffic most frequently into acidified compartments early after phagocytosis, suggesting that they had lost their ability to arrest phagosomal maturation. Molecular analysis of these mutants revealed mainly disruptions in genes involved in cell envelope biogenesis (fadD28), the ESX-1 secretion system (espL/Rv3880), molybdopterin biosynthesis (moaC1 and moaD1), as well as in genes from a novel locus, Rv1503c-Rv1506c. Most interestingly, the mutants in Rv1503c and Rv1506c were perturbed in the biosynthesis of acyltrehalose-containing glycolipids. Our results suggest that such glycolipids indeed play a critical role in the early intracellular fate of the tubercle bacillus. The unbiased approach developed here can be easily adapted for functional genomics study of intracellular pathogens, together with focused discovery of new anti-microbials.


Assuntos
Glicolipídeos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Fagossomos/fisiologia , Tuberculose/metabolismo , Tuberculose/patologia , Animais , Feminino , Macrófagos/citologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fagocitose , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tuberculose/microbiologia
12.
Microbiology (Reading) ; 156(Pt 11): 3492-3502, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20688818

RESUMO

Lipoarabinomannan (LAM) is a major glycolipid in the mycobacterial cell envelope. LAM consists of a mannosylphosphatidylinositol (MPI) anchor, a mannan core and a branched arabinan domain. The termini of the arabinan branches can become substituted with one to three α(1→2)-linked mannosyl residues, the mannose cap, producing ManLAM. ManLAM has been associated with a range of different immunomodulatory properties of Mycobacterium tuberculosis during infection of the host. In some of these effects, the presence of the mannose cap on ManLAM appears to be crucial for its activity. So far, in the biosynthesis of the mannose cap on ManLAM, two enzymes have been reported to be involved: a mannosyltransferase that adds the first mannosyl residue of the mannose caps to the arabinan domain of LAM, and another mannosyltransferase that elongates the mannose cap up to three mannosyl residues. Here, we report that a third gene is involved, MMAR_2380, which is the Mycobacterium marinum orthologue of Rv1565c. MMAR_2380 encodes a predicted transmembrane acyltransferase. In M. marinum ΔMMAR_2380, the LAM arabinan domain is still intact, but the mutant LAM lacks the mannose cap. Additional effects of mutation of MMAR_2380 on LAM were observed: a higher degree of branching of both the arabinan domain and the mannan core, and a decreased incorporation of [1,2-(14)C]acetate into the acyl chains in mutant LAM as compared with the wild-type form. This latter effect was also observed for related lipoglycans, i.e. lipomannan (LM) and phosphatidylinositol mannosides (PIMs). Furthermore, the mutant strain showed increased aggregation in liquid cultures as compared with the wild-type strain. All phenotypic traits of M. marinum ΔMMAR_2380, the deficiency in the mannose cap on LAM and changes at the cell surface, could be reversed by complementing the mutant strain with MMAR_2380. Strikingly, membrane preparations of the mutant strain still showed enzymic activity for the arabinan mannose-capping mannosyltransferase similar to that of the wild-type strain. Although the exact function of MMAR_2380 remains unknown, we show that the protein is essential for the presence of a mannose cap on LAM.


Assuntos
Aciltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Manose/biossíntese , Mycobacterium marinum/enzimologia , Acilação , Aciltransferases/genética , Genes Bacterianos , Teste de Complementação Genética , Lipopolissacarídeos/química , Manose/química , Manosiltransferases/metabolismo , Mutação , Mycobacterium marinum/genética
13.
Glycobiology ; 19(11): 1235-47, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19654261

RESUMO

Arabinogalactan (AG) and lipoarabinomannan (LAM) are the two major cell wall (lipo)polysaccharides of mycobacteria. They share arabinan chains made of linear segments of alpha-1,5-linked D-Araf residues with some alpha-1,3-branching, the biosynthesis of which offers opportunities for new chemotherapeutics. In search of the missing arabinofuranosyltransferases (AraTs) responsible for the formation of the arabinan domains of AG and LAM in Mycobacterium tuberculosis, we identified Rv0236c (AftD) as a putative membrane-associated polyprenyl-dependent glycosyltransferase. AftD is 1400 amino acid-long, making it the largest predicted glycosyltransferase of its class in the M. tuberculosis genome. Assays using cell-free extracts from recombinant Mycobacterium smegmatis and Corynebacterium glutamicum strains expressing different levels of aftD indicated that this gene encodes a functional AraT with alpha-1,3-branching activity on linear alpha-1,5-linked neoglycolipid acceptors in vitro. The disruption of aftD in M. smegmatis resulted in cell death and a decrease in its activity caused defects in cell division, reduced growth, alteration of colonial morphology, and accumulation of trehalose dimycolates in the cell envelope. Overexpression of aftD in M. smegmatis, in contrast, induced the accumulation of two arabinosylated compounds with carbohydrate backbones reminiscent of that of LAM and a degree of arabinosylation dependent on aftD expression levels. Altogether, our results thus indicate that AftD is an essential AraT involved in the synthesis of the arabinan domain of major mycobacterial cell envelope (lipo)polysaccharides.


Assuntos
Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Configuração de Carboidratos , Sequência de Carboidratos , Galactanos/química , Galactanos/metabolismo , Glicosiltransferases/química , Glicosiltransferases/isolamento & purificação , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
14.
Mol Immunol ; 46(15): 2947-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19608279

RESUMO

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappaB (NF-kappaB) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.


Assuntos
Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/imunologia , Proteína Quinase C/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Técnicas de Silenciamento de Genes , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/imunologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/imunologia , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/agonistas , Proteínas Supressoras da Sinalização de Citocina/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
15.
J Biol Chem ; 284(35): 23187-96, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19561082

RESUMO

Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM(6) or PIM(2) exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon beta (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFkappaB translocation. Synthetic PIM(1) and a PIM(2) mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Citocinas/imunologia , Regulação para Baixo , Fator 88 de Diferenciação Mieloide/imunologia , Fosfatidilinositóis/imunologia , Receptor 4 Toll-Like/imunologia , Tuberculose/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Citocinas/genética , Expressão Gênica , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Fator 88 de Diferenciação Mieloide/genética , Receptor 4 Toll-Like/genética , Tuberculose/genética , Tuberculose/microbiologia
16.
PLoS One ; 4(3): e4911, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19290049

RESUMO

Activation of inflammatory immune responses during granuloma formation by the host upon infection of mycobacteria is one of the crucial steps that is often associated with tissue remodeling and breakdown of the extracellular matrix. In these complex processes, cyclooxygenase-2 (COX-2) plays a major role in chronic inflammation and matrix metalloproteinase-9 (MMP-9) significantly in tissue remodeling. In this study, we investigated the molecular mechanisms underlying Phosphatidyl-myo-inositol dimannosides (PIM2), an integral component of the mycobacterial envelope, triggered COX-2 and MMP-9 expression in macrophages. PIM2 triggers the activation of Phosphoinositide-3 Kinase (PI3K) and Notch1 signaling leading to COX-2 and MMP-9 expression in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Notch1 signaling perturbations data demonstrate the involvement of the cross-talk with members of PI3K and Mitogen activated protein kinase pathway. Enforced expression of the cleaved Notch1 in macrophages induces the expression of COX-2 and MMP-9. PIM2 triggered significant p65 nuclear factor -kappaB (NF-kappaB) nuclear translocation that was dependent on activation of PI3K or Notch1 signaling. Furthermore, COX-2 and MMP-9 expression requires Notch1 mediated recruitment of Suppressor of Hairless (CSL) and NF-kappaB to respective promoters. Inhibition of PIM2 induced COX-2 resulted in marked reduction in MMP-9 expression clearly implicating the role of COX-2 dependent signaling events in driving the MMP-9 expression. Taken together, these data implicate PI3K and Notch1 signaling as obligatory early proximal signaling events during PIM2 induced COX-2 and MMP-9 expression in macrophages.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Macrófagos/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Receptores de Hialuronatos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo
17.
Biochem J ; 419(3): 661-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19196239

RESUMO

CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32-333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e alpha-chain with beta(2)-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.


Assuntos
Antígenos CD1/metabolismo , Compartimento Celular , Endossomos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Aminoácidos , Animais , Antígenos CD1/química , Linhagem Celular , Membrana Celular/metabolismo , Drosophila , Retículo Endoplasmático/metabolismo , Humanos , Lisossomos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Solubilidade
18.
J Immunol ; 180(10): 6696-702, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18453589

RESUMO

TLR2 is a pattern-recognition receptor that is activated by a large variety of conserved microbial components, including lipoproteins, lipoteichoic acids, and peptidoglycan. Lipoglycans are TLR2 agonists found in some genera of the phylogenetic order Actinomycetales, including Mycobacterium. They are built from a mannosyl-phosphatidyl-myo-inositol anchor attached to a (alpha1-->6)-linked d-mannopyranosyl chain whose units can be substituted by d-mannopyranosyl and/or d-arabinofuranosyl units. At this time, little is known about the molecular bases underlying their ability to induce signaling via this receptor. We have recently shown that the anchor must be at least triacylated, including a diacylglyceryl moiety, whereas the contribution of the glycosidic moiety is not yet clearly defined. We show herein that lipoglycan activity is directly determined by mannan chain length. Indeed, activity increases with the number of units constituting the (alpha1-->6)-mannopyranosyl backbone but is also critically dependent on the substitution type of the 2-hydroxyl of these units. We thus provide evidence for the definition of a new pattern that includes the nonlipidic moiety of the molecules, most probably as a result of the (alpha1-->6)-mannopyranosyl backbone being a highly conserved structural feature among lipoglycans. Moreover, we demonstrate that lipoglycans can bind cell surface-expressed TLR2 and that their ability to induce signaling might be, at least in part, dictated by their avidity for the receptor. Finally, our data suggest that lipoglycans and lipoproteins have a common binding site. The present results are thus discussed in the light of the recently published crystal structure of a TLR1-TLR2-lipopeptide complex.


Assuntos
Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Mananas/química , Mananas/metabolismo , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/metabolismo , Infecções Bacterianas/imunologia , Linhagem Celular , Humanos , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Mananas/imunologia , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Transfecção , Fator de Necrose Tumoral alfa
19.
J Immunol ; 180(6): 3642-6, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18325888

RESUMO

The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD1/genética , Antígenos CD1/metabolismo , Glicoproteínas/metabolismo , Mutação , Alelos , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Animais , Antígenos CD1/fisiologia , Linhagem Celular Tumoral , Células Clonais , Endossomos/genética , Endossomos/imunologia , Endossomos/metabolismo , Gangliosídeos/genética , Gangliosídeos/metabolismo , Glicolipídeos/genética , Glicolipídeos/metabolismo , Glicolipídeos/fisiologia , Glicoproteínas/genética , Glicoproteínas/fisiologia , Humanos , Polimorfismo Genético , Processamento de Proteína Pós-Traducional/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia
20.
Mol Microbiol ; 65(6): 1503-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17714444

RESUMO

Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of alpha(1-->6) and alpha(1-->2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor beta-D-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an alpha(1-->6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the alpha(1-->6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Lipopolissacarídeos/biossíntese , Manosiltransferases/metabolismo , Mycobacterium tuberculosis/enzimologia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Membrana Celular/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Genoma Bacteriano , Glicolipídeos/biossíntese , Glicolipídeos/química , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Manosiltransferases/química , Dados de Sequência Molecular , Mutação/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA